JavaScript required
We’re sorry, but Coda doesn’t work properly without JavaScript enabled.
Gallery
AI4Bharat
Share
Explore
Gallery
AI4Bharat
AI4Bharat Public
Seminars
Publications
People
Models
AI4Bharat Admin
Members
Planning
Licensing
Meity Timelines
Hiring
AI4Bharat Summer of Code
IndicMining
Meeting Minutes
NeurIPS dataset paper plan
IndicASR
RNN-T
Multilingual ASR
Analysis
Adaptation in End-to-End Speech Recognition
Data Augmentation
Text Normalization for speech
Shoonya
Documentation - User Manual
Welcome Page
User-Roles on Shoonya
Getting Started with Workflow
Manager Workflow
Language-Experts Workflow
Annotation Workflow
Collection Workflow
Terminology
FAQs and Feedback
Management Dashboard
Language Experts
Annotation Tasks
Reporting and Analytics
Projects DataExports
Task Details
Shoonya Development Document
Shoonya Workflow
Software Architecture Diagrams
Technology Used
Shoonya Code Structure
Shoonya Deployment
Shoonya Forms
Feature Suggestions
Report Bugs for Shoonya
User Feedbacks
Stats-collection Forms
IndicASR
Multilingual ASR
Analysis
Things to do
Accuracy
Augmentation in fine-tuning data <- read papers
Proper noun hack <- talk to Harveen
Adding hot words / domain specialization <- read papers, engineering efforts
Evaluating multilingual model options
Evaluating model size, batch size, ...
Latency
Time in AM vs LM <- measure
Reduce LM time with smaller LM <- compare accuracy, latency
Evaluating all preprocessing steps and then applying them to fine-tuning and pre-training data
Multilingual Finetuning results
Multilingual Finetuning results
3
Model Name
Language
odia
63
bengali
63
telugu
87
gujarati
84
hindi
65
marathi
69
tamil
84
tamil_32_2_-1
20
odia_32_2_-1
15
telugu_32_2_-1
20
bengali_32_2_-1
15
marathi_32_2_-1
15
gujarati_32_2_-1
20
hindi_32_2_-1
16
4
Test set
dcunk_new
21
dckn_new
21
mucs
21
dcunk_new
21
dckn_new
21
openslr
21
dcunk_new
22
dckn_new
22
mucs
21
msr
22
dcunk_new
21
dckn_new
21
mucs
21
msr
21
dcunk_new
22
dckn_new
21
mucs
22
dcunk_new
24
dckn_new
21
mucs
24
dcunk_new
21
dckn_new
21
mucs
21
msr
21
dcunk_new
5
dckn_new
5
mucs
5
msr
5
dcunk_new
5
dckn_new
5
mucs
5
dcunk_new
5
dckn_new
5
mucs
5
msr
5
dcunk_new
5
dckn_new
5
openslr
5
dcunk_new
5
dckn_new
5
mucs
5
dcunk_new
5
dckn_new
5
mucs
5
msr
5
dcunk_new
5
dckn_new
5
mucs
6
4
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
Model Name
Language
odia
63
bengali
63
telugu
87
gujarati
84
hindi
65
marathi
69
tamil
84
tamil_32_2_-1
20
odia_32_2_-1
15
telugu_32_2_-1
20
bengali_32_2_-1
15
marathi_32_2_-1
15
gujarati_32_2_-1
20
hindi_32_2_-1
16
4
Test set
dcunk_new
21
dckn_new
21
mucs
21
dcunk_new
21
dckn_new
21
openslr
21
dcunk_new
22
dckn_new
22
mucs
21
msr
22
dcunk_new
21
dckn_new
21
mucs
21
msr
21
dcunk_new
22
dckn_new
21
mucs
22
dcunk_new
24
dckn_new
21
mucs
24
dcunk_new
21
dckn_new
21
mucs
21
msr
21
dcunk_new
5
dckn_new
5
mucs
5
msr
5
dcunk_new
5
dckn_new
5
mucs
5
dcunk_new
5
dckn_new
5
mucs
5
msr
5
dcunk_new
5
dckn_new
5
openslr
5
dcunk_new
5
dckn_new
5
mucs
5
dcunk_new
5
dckn_new
5
mucs
5
msr
5
dcunk_new
5
dckn_new
5
mucs
6
4
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
WER
CER
base_existing_test4
48
72
20.04
71.1
19.28
33.73
7.48
47.38
15.63
49.76
16.23
30.99
11.27
44.33
10.02
43.6
9.85
40.46
9.92
33.19
7.21
26.16
6.96
33.21
9.38
34.29
12.02
27.49
8.75
30.63
9.63
27.14
8.87
18.67
6.39
74.03
21.93
69.46
18.84
29.57
7.42
36.56
6.22
39.86
7.32
35.64
7.88
29.42
5.85
22.5
4.05
23.11
4.96
24.61
5.35
22.55
4.69
42.68
16.89
41.21
15.73
27.84
6.8
25.41
8.19
25.11
8.36
24.27
6.32
22.61
5.54
29.19
11.34
30.81
11.96
12.44
3.93
43.28
21.68
37.92
17.26
17.69
6.6
13.82
4.95
17.95
7.67
21.38
9.16
18.87
7.49
12.06
5.61
11.54
5.31
14.33
5.56
large_existing
48
57.34
13.52
57.08
13.17
28.77
4.64
35.55
12.18
37.83
12.99
25.85
9.79
37.61
7.87
36.15
7.3
35.8
8.35
29.2
6.14
21.86
5.75
26.2
7.08
29.59
10.08
23.63
7.38
23.86
7.05
20.05
6.17
16.38
5.25
58.69
15.08
56.32
13.29
20.74
4.26
33.13
5.37
34.38
5.91
32.5
6.93
26.99
5.25
21.43
3.62
21.42
3.93
23.59
4.94
21.91
4.45
32.46
9.56
32.74
9.25
24.25
4.19
22.33
5.99
21
5.44
22.63
5.59
21.28
4.97
23.5
7.83
25.17
8.43
10.95
3.34
31.06
12.74
28.6
10.41
13
3.88
12.05
3.91
14.22
5
19.02
7.6
17.58
6.72
9.25
3.83
8.58
3.37
12.97
4.56
base_bs2x_existing
24
78.28
23.39
78.17
22.72
37.81
9.95
46.29
15.52
48.07
15.67
27.65
10.29
40.31
8.63
39.74
8.63
37.36
9.08
30.21
6.55
24.38
6.7
31.67
9.18
32.35
11.24
25.65
8.14
29.86
9.61
26.95
8.98
19.34
6.66
74.62
22.83
71.18
19.49
36.59
9.33
34.86
5.93
36.79
6.72
33.36
7.31
27.25
5.32
base_steps2x_existing
24
81.94
25.65
81.77
24.8
39.23
10.96
47.08
16.12
50.47
16.69
27.79
10.28
40.84
8.98
41.5
9.75
37.77
9.1
30.35
6.52
26.87
7.43
33.87
9.97
32.88
11.43
25.76
8.17
28.76
9.49
27.79
9.31
19.79
6.82
74.44
23.73
71.05
20.45
38.53
10.92
34.6
5.88