Skip to content
Practical Statistics for Data Scientists
  • Pages
    • 1. Exploratory data analysis
      • Elements of structured data
      • Estimates of location
      • Estimates of variability
      • Exploring the data distribution
      • Exploring binary and categorical data
      • Correlation
      • Exploring two or more variables
    • 2. Data distributions
      • Random sampling and sample bias
      • Selection bias
      • Sampling distribution of a statistic
      • The bootstrap
      • Confidence intervals
      • Normal distribution
      • Long-tailed distributions
      • Student's t-distribution
      • Binomial distribution
      • Poisson and related distributions
    • 3. Statistical experiments
      • A/B testing
      • Hypothesis tests
      • Resampling
      • Statistical significance and p-values
      • t-Tests
      • Multiple testing
      • Degrees of freedom
      • ANOVA
      • Chi-squre test
      • Multi-arm bandit algorithm
      • Power and sample size
    • 4. Regression
      • Simple linear regression
      • Multiple linear regression
      • Prediction using regression
      • Factor variables in regression
      • Interpreting the regression equation
      • Testing the assumptions: regression diagnostics
      • Polynomial and spline regression
    • 5. Classification
      • Naive Bayes
      • Discriminant analysis
      • Logistic regression
      • Evaluating classification models
      • Strategies for imbalanced data
    • 6. Statistical ML
      • K-nearest neighbours
      • Tree models
      • Bagging and random forest
      • Boosting
    • 7. Unsupervised learning
      • Principal components analysis
      • K-means clustering
      • Hierarchical clustering
      • Model-based clustering
      • Scaling and categorical variables

Polynomial and spline regression


 
Want to print your doc?
This is not the way.
Try clicking the ··· in the right corner or using a keyboard shortcut (
CtrlP
) instead.