Results Board
EEGNet:
EEGNetWrapper(
(eegnet): EEGNet(
(block1): Sequential(
(0): Conv2d(1, 8, kernel_size=(1, 64), stride=(1, 1), padding=(0, 32), bias=False)
(1): BatchNorm2d(8, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): Conv2dWithConstraint(8, 16, kernel_size=(16, 1), stride=(1, 1), groups=8, bias=False)
(3): BatchNorm2d(16, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(4): ELU(alpha=1.0)
(5): AvgPool2d(kernel_size=(1, 4), stride=4, padding=0)
(6): Dropout(p=0.5, inplace=False)
)
(block2): Sequential(
(0): Conv2d(16, 16, kernel_size=(1, 16), stride=(1, 1), padding=(0, 8), groups=16, bias=False)
(1): Conv2d(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(16, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(3): ELU(alpha=1.0)
(4): AvgPool2d(kernel_size=(1, 8), stride=8, padding=0)
(5): Dropout(p=0.5, inplace=False)
)
(lin): Linear(in_features=64, out_features=5, bias=False)
)
)
======================================================================
Layer (type:depth-idx) Param #
======================================================================
├─EEGNet: 1-1 --
| └─Sequential: 2-1 --
| | └─Conv2d: 3-1 512
| | └─BatchNorm2d: 3-2 16
| | └─Conv2dWithConstraint: 3-3 256
| | └─BatchNorm2d: 3-4 32
| | └─ELU: 3-5 --
| | └─AvgPool2d: 3-6 --
| | └─Dropout: 3-7 --
| └─Sequential: 2-2 --
| | └─Conv2d: 3-8 256
| | └─Conv2d: 3-9 256
| | └─BatchNorm2d: 3-10 32
| | └─ELU: 3-11 --
| | └─AvgPool2d: 3-12 --
| | └─Dropout: 3-13 --
| └─Linear: 2-3 320
======================================================================
Total params: 1,680
Trainable params: 1,680
Non-trainable params: 0
1 - EEGNet - Normal split