Meetings
Link to page

EEGNet:

Oversample classic, SMOTE, custom temporal aware oversampling:

confusion_matrix.png
loss_plot2.png

Using class weight, normal split and no sampling
EEGNet_confusion_matrix.png
EGG_loss_plot.png
precision recall f1-score support
stop 0.33 0.04 0.07 20491 forward 0.50 0.97 0.66 34046 reverse 0.00 0.00 0.00 13835
accuracy 0.49 68372 macro avg 0.28 0.34 0.24 68372 weighted avg 0.35 0.49 0.35 68372

LSTM: Using class weight, normal split and classic oversampling
EEGNet_confusion_matrix.png
EGG_loss_plot.png
precision recall f1-score support
stop 0.33 0.04 0.07 20491 forward 0.50 0.97 0.66 34046 reverse 0.00 0.00 0.00 13835
accuracy 0.49 68372 macro avg 0.28 0.34 0.24 68372 weighted avg 0.35 0.49 0.35 68372


Dynamical Graph Convolutional Neural Networks (DGCNN):
DGCNN_confusion_matrix.png
DGCNN_loss_plot.png
precision recall f1-score support
stop 0.30 0.91 0.45 20491 forward 0.36 0.06 0.11 34046 reverse 1.00 0.00 0.00 13835
accuracy 0.30 68372 macro avg 0.55 0.32 0.18 68372 weighted avg 0.47 0.30 0.19 68372

Figure_1.png


Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.