Meetings
Link to page
GPU: NVIDIA GeForce GTX 1080 Ti

Without windowing

Subject 1:
EGNET Model:
Accuracy: 99.94% Size of training set: 6382 Size of testing set: 1596
CM_S1S1_WW.png
classification report
Class
Precision
Recall
F1-score
Support
left
1
1
1
191
reverse
1
1
1
14
right
1
1
1
235
steer
1
1
1
718
stop
1
1
1
438
Total/Average
1
1
1
1,596
There are no rows in this table


DeepConvNet:
Accuracy: 99.87% Size of training set: 6382 Size of testing set: 1596
CM_S1S1_WW_DeepConvNet.png
Classification Report _
Class
Precision
Recall
F1-score
Support
left
1.00
1.00
1.00
191
reverse
1.00
1.00
1.00
14
right
1.00
1.00
1.00
235
steer
1.00
1.00
1.00
718
stop
1.00
1.00
1.00
438
accuracy
1
macro avg
1.00
1.00
1.00
1,596
weighted avg
1.00
1.00
1.00
1,596
There are no rows in this table

EEGTransformer:
Accuracy: 0.88% Precision: 0.00 Recall: 0.01 F1-score: 0.00
Size of training set: 6382 (79.99%) Size of testing set: 1596 (20.01%)
CM_S1S1_WW_EEGTransformer.png
Classification Report __
Class
Precision
Recall
F1-score
Support
left
0.00
0.00
0
191
reverse
0.01
1.00
0.02
14
right
0.00
0.00
0
235
steer
0.00
0.00
0
718
stop
0.00
0.00
0
438
accuracy
0.01
1,596
macro avg
0.00
0.20
0
1,596
weighted avg
0.00
0.01
0
1,596
There are no rows in this table

With Gaussian windowing

Subject 1:
label count steer 341 stop 233 right 114 left 100 reverse 9
Number of samples before windowing: 7978 Number of samples after windowing: 797
Original EEG Channel 1.png
Windowed EEG Channel 1.png
Comparison of Original and Windowed EEG Data.png

EEGNET Model:
Random splitting training and testing sets:
Accuracy: 99.38%
Size of training set: 637 Size of testing set: 160
CM_S1S1_GW.png

Classification Report S1_EEGNnet_random
Class
Precision
Recall
F1-score
Support
left
0.95
1.00
0.98
20
reverse
1.00
1.00
1.00
3
right
1.00
1.00
1.00
22
steer
1.00
0.98
0.99
62
stop
1.00
1.00
1.00
53
Accuracy
0.99
Macro avg
0.99
1.00
0.99
160
Weighted avg
0.99
0.99
0.99
160
There are no rows in this table

Time-based cross-validation (sequential train-test split):
Divide the data into two halves and perform a continuous split (80% training, 20% testing) on each half.
Accuracy: 89.38%
Size of training set: 637 Size of testing set: 160
CM_S1S1_GW_STTS.png
Classification Report S1_EEGNnet_STTS
Class
Precision
Recall
F1-score
Support
left
1.00
0.64
0.78
11
reverse
0.29
1.00
0.44
2
right
0.81
1.00
0.89
21
steer
0.98
0.91
0.94
96
stop
0.84
0.87
0.85
30
Accuracy
0.89
Macro avg
0.78
0.88
0.78
160
Weighted avg
0.92
0.89
0.90
160
There are no rows in this table


DeepConvNet:
Random splitting training and testing sets:
Size of training set: 637 Size of testing set: 160
Accuracy: 96.88% Precision: 0.97 Recall: 0.97 F1-score: 0.97
CM_S1S1_GW_DeepConvNet.png
Classification Report S1_DeepConvNet_random
Class
Precision
Recall
F1-score
Support
left
0.95
0.95
0.95
20
reverse
1.00
1.00
1.00
3
right
0.88
1.00
0.94
22
steer
1.00
0.94
0.97
62
stop
0.98
1.00
0.99
53
accuracy
0.97
macro avg
0.96
0.98
0.97
160
weighted avg
0.97
0.97
0.97
160
There are no rows in this table


Time-based cross-validation (sequential train-test split):
Size of training set: 637 Size of testing set: 160
Accuracy: 95.00% Precision: 0.95 Recall: 0.95 F1-score: 0.95
CM_S1S1_GW_DeepConvNet_STTS.png
Classification Report S1_DeepConvNet_STTS
Class
Precision
Recall
F1-score
Support
left
1.00
0.64
0.78
11
reverse
1.00
1.00
1
2
right
0.88
1.00
0.93
21
steer
0.96
0.97
0.96
96
stop
0.97
0.97
0.97
30
Accuracy
0.95
160
Macro avg
0.96
0.91
0.93
160
Weighted avg
0.95
0.95
0.95
160
There are no rows in this table


EEGTransformer:
Random splitting training and testing sets:
Accuracy: 33.12% Precision: 0.11 Recall: 0.33 F1-score: 0.16
Size of training set: 637 Size of testing set: 160
CM_S1S1_GW_EEGTransformer.png
Classification Report S1_EEGTransformer_random
Class
Precision
Recall
F1-score
Support
left
0.00
0.00
0
20
reverse
0.00
0.00
0
3
right
0.00
0.00
0
22
steer
0.00
0.00
0
62
stop
0.33
1.00
0.5
53
accuracy
0.33
160
macro avg
0.07
0.20
0.1
160
weighted avg
0.11
0.33
0.16
160
There are no rows in this table

Time-based cross-validation (sequential train-test split):
Accuracy: 13.12% Precision: 0.02 Recall: 0.13 F1-score: 0.03
Size of training set: 637 (79.92%) Size of testing set: 160 (20.08%)
CM_S1S1_GW_EEGTransformer_STTS.png
Classification Report S1_EEGTransformer_STTS
Class
Precision
Recall
F1-score
Support
left
0.00
0.00
0
11
reverse
0.00
0.00
0
2
right
0.13
1.00
0.23
21
steer
0.00
0.00
0
96
stop
0.00
0.00
0
30
accuracy
0.13
160
macro avg
0.03
0.20
0.05
160
weighted avg
0.02
0.13
0.03
160
There are no rows in this table

Subject 2, Session 1:
label count steer 341 stop 265 left 124 right 94 reverse 11 Number of samples before windowing: 8358 Number of samples after windowing: 835
Original EEG Channel 1_S2S1.png
Windowed EEG Channel 1_S2S1.png
Comparison of Original and Windowed EEG Data_Ch1_S2S1.png
EEGNET Model:
Screenshot from 2024-06-24 02-34-39.png
CM_S2S1_GW_STTS.png

DeepConvNet:

Screenshot from 2024-06-24 03-21-11.png
CM_S2S1_GW_DeepConvNet_STTS.png

EEGTransformer:
Screenshot from 2024-06-24 03-59-16.png
CM_S2S1_GW_EEGTransformer_STTS.png

Subject 2, Session 2:
label count steer 145 stop 118 left 77 right 67
reverse 0 Number of samples before windowing: 4079 Number of samples after windowing: 407
Original EEG Channel 1_S2S2.png
Windowed EEG Channel 1_S2S2.png
Comparison of Original and Windowed EEG Data_Ch1_S2S2.png
EEGNET Model:
Screenshot from 2024-06-24 02-36-55.png

CM_S2S2_GW_STTS.png
DeepConvNet:
Screenshot from 2024-06-24 03-23-44.png
CM_S2S2_GW_DeepConvNet_STTS.png

EEGTransformer:
Screenshot from 2024-06-24 04-01-03.png
CM_S2S2_GW_EEGTransformer_STTS.png

Subject 3:
label count steer 313 stop 185 right 155 left 147 reverse 82 Number of samples before windowing: 8827 Number of samples after windowing: 882
Original EEG Channel 1_S3S1.png
Windowed EEG Channel 1_S3S1.png
Comparison of Original and Windowed EEG Data_Ch1_S3S1.png
EEGNET Model:
Screenshot from 2024-06-24 02-39-09.png
CM_S3S1_GW_STTS.png

DeepConvNet:
Screenshot from 2024-06-24 03-25-19.png
CM_S3S1_GW_DeepConvNet_STTS.png

EEGTransformer:
Screenshot from 2024-06-24 04-04-06.png
CM_S3S1_GW_EEGTransformer_STTS.png

Subject 4:
label count steer 229 stop 151 reverse 46 left 16 right 13 Number of samples before windowing: 4552 Number of samples after windowing: 455
Original EEG Channel 1_S4S1.png
Windowed EEG Channel 1_S4S1.png
Comparison of Original and Windowed EEG Data_Ch1_S4S1.png
EEGNET Model:
Screenshot from 2024-06-24 02-40-52.png
CM_S4S1_GW_STTS.png

DeepConvNet:
Screenshot from 2024-06-24 03-26-52.png
CM_S4S1_GW_DeepConvNet_STTS.png

EEGTransformer:
Screenshot from 2024-06-24 04-06-06.png
CM_S4S1_GW_EEGTransformer_STTS.png
Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.