Meetings
Link to page
Work done:
Balancing Data: Implemented using undersampling, class weighting, and data augmentation.
Training Models: Trained using EEGNet, EEG Transformer and LSTM.
Training Approaches: Conducted within-subject and cross-subject training.

Questions:
Impact of Band-Pass Filtering on Signal Shape:
Does applying a band-pass filter alter the shape of the EEG signal?
Figure_1.png
Figure_2.png

Figure_4.png

Using MNE package:
Creating RawArray with float64 data, n_channels=16, n_times=7978 Range : 0 ... 7977 = 0.000 ... 63.816 secs Ready. Filtering raw data in 1 contiguous segment Setting up band-pass filter from 1 - 40 Hz
FIR filter parameters --------------------- Designing a one-pass, zero-phase, non-causal bandpass filter: - Windowed time-domain design (firwin) method - Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation - Lower passband edge: 1.00 - Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz) - Upper passband edge: 40.00 Hz - Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz) - Filter length: 413 samples (3.304 s)

Handling Spikes in EEG Data:
There are significant spikes in the EEG data, and one recommendation is to use EEGNet to address these. What are your thoughts on this approach?

Standardization of Training Data:
It is suggested to standardize the data by subtracting the mean and dividing by the unit variance for each channel (column) before training. This process changes the values, but does it affect the meaning of the channels?

Within-Subject and Cross-Subject Training Approaches:
For within-subject training, I balanced the data by randomly sampling from the maximum classes, sorted the data in a time-based manner, and then split it into two halves (80% training and 20% testing).
For cross-subject training, I combined the data and balanced it without considering the time sequence.
Are these approaches reasonable?

Result of trained data using EEGNet using undersampling:

classification_report_EEGNet_undersampling.txt
27.4 kB

window size = 2
combined_confusion_matrix.png
S01S01_labeled_eeg_data_W2.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W2.csv_confusion_matrix.png
S02S02_labeled_eeg_data_W2.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W2.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W2.csv_confusion_matrix.png


combined_loss_plot.png



S01S01_labeled_eeg_data_W2.csv_loss_plot.png



S02S01_labeled_eeg_data_W2.csv_loss_plot.png



S02S02_labeled_eeg_data_W2.csv_loss_plot.png



S03S01_labeled_eeg_data_W2.csv_loss_plot.png



S04S01_labeled_eeg_data_W2.csv_loss_plot.png

window size =3
combined_confusion_matrix.png
S01S01_labeled_eeg_data_W3.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W3.csv_confusion_matrix.png
S02S02_labeled_eeg_data_W3.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W3.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W3.csv_confusion_matrix.png

combined_loss_plot.png




S01S01_labeled_eeg_data_W3.csv_loss_plot.png



S02S01_labeled_eeg_data_W3.csv_loss_plot.png



S02S02_labeled_eeg_data_W3.csv_loss_plot.png



S03S01_labeled_eeg_data_W3.csv_loss_plot.png




S04S01_labeled_eeg_data_W3.csv_loss_plot.png

window size =4
combined_confusion_matrix.png
S01S01_labeled_eeg_data_W4.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W4.csv_confusion_matrix.png
S02S02_labeled_eeg_data_W4.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W4.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W4.csv_confusion_matrix.png


combined_loss_plot.png



S01S01_labeled_eeg_data_W4.csv_loss_plot.png



S02S01_labeled_eeg_data_W4.csv_loss_plot.png




S02S02_labeled_eeg_data_W4.csv_loss_plot.png



S03S01_labeled_eeg_data_W4.csv_loss_plot.png



S04S01_labeled_eeg_data_W4.csv_loss_plot.png


window size =5
combined_confusion_matrix.png
S01S01_labeled_eeg_data_W5.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W5.csv_confusion_matrix.png
S02S02_labeled_eeg_data_W5.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W5.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W5.csv_confusion_matrix.png


combined_loss_plot.png



S01S01_labeled_eeg_data_W5.csv_loss_plot.png



S02S01_labeled_eeg_data_W5.csv_loss_plot.png



S02S02_labeled_eeg_data_W5.csv_loss_plot.png




S03S01_labeled_eeg_data_W5.csv_loss_plot.png



S04S01_labeled_eeg_data_W5.csv_loss_plot.png


window size =6

combined_confusion_matrix.png
S01S01_labeled_eeg_data_W6.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W6.csv_confusion_matrix.png
S02S02_labeled_eeg_data_W6.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W6.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W6.csv_confusion_matrix.png


combined_loss_plot.png



S01S01_labeled_eeg_data_W6.csv_loss_plot.png



S02S01_labeled_eeg_data_W6.csv_loss_plot.png




S02S02_labeled_eeg_data_W6.csv_loss_plot.png



S03S01_labeled_eeg_data_W6.csv_loss_plot.png



S04S01_labeled_eeg_data_W6.csv_loss_plot.png

Result of trained data using EEGNet using class weighting:

classification_report_EEGNet_class_weighting.txt
21.1 kB

window size = 2
S01S01_labeled_eeg_data_W2.csv_confusion_matrix.png


S01S01_labeled_eeg_data_W2.csv_loss_plot.png
S02S01_labeled_eeg_data_W2.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W2.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W2.csv_confusion_matrix.png
w2_combined_confusion_matrix.png


S02S01_labeled_eeg_data_W2.csv_loss_plot.png



S03S01_labeled_eeg_data_W2.csv_loss_plot.png



S04S01_labeled_eeg_data_W2.csv_loss_plot.png



w2_combined_loss_plot.png


window size = 3
S01S01_labeled_eeg_data_W3.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W3.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W3.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W3.csv_confusion_matrix.png
w3_combined_confusion_matrix.png


S01S01_labeled_eeg_data_W3.csv_loss_plot.png



S02S01_labeled_eeg_data_W3.csv_loss_plot.png



S03S01_labeled_eeg_data_W3.csv_loss_plot.png



S04S01_labeled_eeg_data_W3.csv_loss_plot.png



w3_combined_loss_plot.png


window size = 4
S01S01_labeled_eeg_data_W4.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W4.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W4.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W4.csv_confusion_matrix.png
w4_combined_confusion_matrix.png


S01S01_labeled_eeg_data_W4.csv_loss_plot.png



S02S01_labeled_eeg_data_W4.csv_loss_plot.png



S03S01_labeled_eeg_data_W4.csv_loss_plot.png



S04S01_labeled_eeg_data_W4.csv_loss_plot.png



w4_combined_loss_plot.png

window size = 5
S01S01_labeled_eeg_data_W5.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W5.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W5.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W5.csv_confusion_matrix.png


S01S01_labeled_eeg_data_W5.csv_loss_plot.png



S02S01_labeled_eeg_data_W5.csv_loss_plot.png



S03S01_labeled_eeg_data_W5.csv_loss_plot.png



S04S01_labeled_eeg_data_W5.csv_loss_plot.png

window size = 6
S01S01_labeled_eeg_data_W6.csv_confusion_matrix.png
S02S01_labeled_eeg_data_W6.csv_confusion_matrix.png
S03S01_labeled_eeg_data_W6.csv_confusion_matrix.png
S04S01_labeled_eeg_data_W6.csv_confusion_matrix.png
w6_combined_confusion_matrix.png

S01S01_labeled_eeg_data_W6.csv_loss_plot.png




Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.