Call:
glm(formula = status ~ x.Gender + x.GPA + x.SAT_Score + x.DistancetoCampus_miles +
x.HouseholdIncome + x.InState + x.Source, family = "binomial",
data = application)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3884 -0.1892 -0.1395 -0.0984 5.6583
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.090e+01 9.207e+02 -0.012 0.990555
x.GenderMale -3.337e-01 9.749e-02 -3.423 0.000619 ***
x.GPA 3.029e-01 1.661e+00 0.182 0.855256
x.SAT_Score1080 - 1350 -2.127e+00 1.520e+00 -1.400 0.161599
x.SAT_Score1110 - 1160 -1.298e+01 6.908e+02 -0.019 0.985004
x.SAT_Score1170 - 1220 -1.292e+01 5.942e+02 -0.022 0.982652
x.SAT_Score1230 - 1280 -1.403e+01 5.994e+02 -0.023 0.981328
x.SAT_Score1290 - 1340 -1.240e+01 7.960e+02 -0.016 0.987573
x.SAT_Score1350 - 1400 -1.229e+01 9.375e+02 -0.013 0.989544
x.SAT_Score1360 - 1530 -3.761e+00 1.673e+00 -2.248 0.024548 *
x.SAT_Score1410 - 1460 -1.211e+01 9.032e+02 -0.013 0.989306
x.SAT_Score930 - 1070 -1.427e+00 1.517e+00 -0.941 0.346877
x.SAT_Score930 - 980 -2.867e+00 1.761e+00 -1.628 0.103460
x.SAT_Score990 - 1040 -1.244e+01 4.848e+02 -0.026 0.979536
x.DistancetoCampus_miles -5.087e-03 9.287e-04 -5.478 4.3e-08 ***
x.HouseholdIncome -1.201e-05 1.442e-06 -8.335 < 2e-16 ***
x.InStateY 4.940e-01 1.272e-01 3.883 0.000103 ***
x.SourceCollegeBoard-Other 8.368e+00 9.207e+02 0.009 0.992748
x.SourceCollegeBoard-Senior_Search 9.073e+00 9.207e+02 0.010 0.992137
x.SourceNRCCUA-Other -3.291e+00 1.380e+03 -0.002 0.998097
x.SourceNRCCUA-Senior_Search -1.694e+00 1.017e+03 -0.002 0.998671
x.SourceProspects-Senior_Search 1.084e+01 9.207e+02 0.012 0.990607
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 4919.1 on 34773 degrees of freedom
Residual deviance: 4594.8 on 34752 degrees of freedom
AIC: 4638.8
Number of Fisher Scoring iterations: 14
> predict(model.app, app_student_1, type="response")
1
0.1058208