Skip to content
[New] Concise and Practical AI/ML
  • Pages
    • Preface
    • Artificial Intelligence
      • Concepts
      • High-level Intelligence
    • Maths for ML
      • Calculus
      • Algebra
    • Machine Learning
      • History of ML
      • ML Models
        • ML Model is Better
        • How a Model Learns
        • Boosted vs Combinatory
      • Neuralnet
        • Neuron
          • Types of Neurons
        • Layers
        • Neuralnet Alphabet
        • Heuristic Hyperparams
      • Feedforward
        • Input Separation
      • Backprop
        • Activation Functions
        • Loss Functions
        • Gradient Descent
        • Optimizers
      • Design Techniques
        • Normalization
        • Regularization
          • Drop-out Technique
        • Concatenation
        • Overfitting & Underfitting
        • Explosion & Vanishing
      • Engineering Techniques
    • Methods of ML
      • icon picker
        Supervised Learning
        • Regression
        • Classification
      • Reinforcement Learning
        • Concepts
        • Bellman Equation
        • Q-table
        • Q-network
        • Learning Tactics
          • Policy Network
      • Unsupervised Learning
        • Some Applications
      • Other Methods
    • Practical Cases
    • Ref & Glossary

Supervised Learning

Formula

w -= rate x g
Where W is weight, Rate is learning rate, G is gradient. It is minus to reduce the overshot of output value, and the delta at output should be Out-Ytrue instead of the other way round.

Training

Logging

In supervised learning, the trainer programme should log out loss value to see whether it is reducing. Also log out accuracy of the Validation Set (Test Set).


 
Want to print your doc?
This is not the way.
Try clicking the ··· in the right corner or using a keyboard shortcut (
CtrlP
) instead.