Skip to content

Unspooling the Equality

This was actually done by ChatGPT

Question
Now please do the same thing, but for payment:
```python
pay = ixpayment(wallet, source, quantity + conciliation(wallet, source, target, quantity))
```

Answer
Sure, let's go through the derivation process with the new definition of `pay`:
We start with the equation:
```python your_value_feign == your_value_honest ```
This can be transformed to:
```python value(ix_feigned, honest_valuation) == value(ix_honest, honest_valuation) ```
Now, we substitute the `pay` function:
```python value(pay(wallet, feigned_valuation, supplier_valuation, quantity), honest_valuation) == value(pay(wallet, honest_valuation, supplier_valuation, quantity), honest_valuation) ```
We're checking this particular payment function:
```python pay = ixpayment(wallet, source, quantity + conciliation(wallet, source, target, quantity)) ```
So, we substitute the `pay` function:
```python value(ixpayment(wallet, feigned_valuation, quantity + conciliation(wallet, feigned_valuation, supplier_valuation, quantity)), honest_valuation) == value(ixpayment(wallet, honest_valuation, quantity + conciliation(wallet, honest_valuation, supplier_valuation, quantity)), honest_valuation) ```
In this context we're using this definition of `conciliation`:
```python def conciliation(wallet, source, target, quantity): return (quantity*wallet).dot(source - target)/wallet.dot(target) ```
So, we substitute the `conciliation` function:
```python value(ixpayment(wallet, feigned_valuation, quantity + (quantity*wallet).dot(feigned_valuation - supplier_valuation)/wallet.dot(supplier_valuation)), honest_valuation) == value(ixpayment(wallet, honest_valuation, quantity + (quantity*wallet).dot(honest_valuation - supplier_valuation)/wallet.dot(supplier_valuation)), honest_valuation) ```
Now we might as well make some substitutions for `ixpayment`:
```python def ixpayment(wallet, valuation, quantity): return wallet * (quantity / value(wallet, valuation)) ```
So, we substitute the `ixpayment` function:
```python value(wallet * ((quantity + (quantity*wallet).dot(feigned_valuation - supplier_valuation)/wallet.dot(supplier_valuation)) / wallet.dot(feigned_valuation)), honest_valuation) == value(wallet * ((quantity + (quantity*wallet).dot(honest_valuation - supplier_valuation)/wallet.dot(supplier_valuation)) / wallet.dot(honest_valuation)), honest_valuation) ```
And now finally we replace `value`:
```python def value(wallet, valuation): return wallet.dot(valuation) ```
So, we substitute the `value` function:
```python (wallet * ((quantity + (quantity*wallet).dot(feigned_valuation - supplier_valuation)/wallet.dot(supplier_valuation)) / wallet.dot(feigned_valuation))).dot(honest_valuation) == (wallet * ((quantity + (quantity*wallet).dot(honest_valuation - supplier_valuation)/wallet.dot(supplier_valuation)) / wallet.dot(honest_valuation))).dot(honest_valuation) ```
This is the final derived equation.

Then we convert to symbols:
(w * ((q + (q*w).(f -s)/w.s)/w.f)).h == (w * ((q + (q*w).(h - s)/w.s)/w.h)).h

And simplify using wolfram alpha:
(w ((q w).(h - s) + q w.s))/(w.h w.s).h = (w ((q w).(f - s) + q w.s))/(w.f w.s).h


Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.