Skip to content
Gallery
OSWIM: Offshore Wind Impacts and Monitoring Hub
Share
Explore
Fish and Fishery Ecology (FFE)

icon picker
Resources

Table C
Search
Bell-et-al._2020
Bell, A.; von der Au, M.; Regnery, J.; Schmid, M.; Meermann, B.; Reifferscheid, G.; Ternes, T.; Buchinger, S. (2020). Does galvanic cathodic protection by aluminum anodes impact marine organisms?. Environmental Sciences Europe , 32(157).
Boatman-et-al._2020
Comparative Study of Aerial Survey Techniques (AT-22-03)
Brodie-et-al._2021
Brodie, J.; Kohut, J.; Zemeckis, D. (2021). Identifying Ecological Metrics and Sampling Strategies for Baseline Monitoring During Offshore Wind Development
Duffy-et-al._2023
Duffy, O.; Chumbinho, R.; Coca, I.; Breslin, J. (2023). Impact of geophysical and geotechnical site investigation surveys on fish and shellfish (Report No. BD00722001). Report by BlueWise Marine. Report for Wind Energy Ireland.
Farr-et-al._2021
Farr, H., Ruttenberg, B., Walter, R. K., Wang, Y. H., & White, C. (2021). Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean & Coastal Management, 207, 105611.
Harsanyi-et-al._2022
Harsanyi, P.; Scott, K.; Easton, B.; Ortiz, G.; Chapman, E.; Piper, A.; Rochas, C.; Lyndon, A. (2022). The Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.). Journal of Marine Science and Engineering, 10(5), 18.
Hesestetun-et-al.2023
Hestetun, J.; Ray, J.; Murvoll, K.; Kjølhamar, A.; Dahlgren, T. (2023). Environmental DNA reveals spatial patterns of fish and plankton diversity at a floating offshore wind farm. Environmental DNA, Early View, 1-18. https://doi.org/10.1002/edn3.450
Hutchinson-et-al._2023
Hutchison, Z.; Gill, A.; Sigray, P.; He, H.; King, J. (2020). Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Scientific Reports, 10, 4219 . https://doi.org/10.1038/s41598-020-60793-x
ICF_2020
ICF. 2020. Comparison of Environmental Effects from Different Offshore Wind Turbine Foundations. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Headquarters, Sterling, VA. OCS Study BOEM 2020-041. 42 pp
Kordan-et-al._2024
Kordan, M.; Yakan, S. (2024). The effect of offshore wind farms on the variation of the phytoplankton population. Regional Studies in Marine Science, 69 https://doi.org/10.1016/j.rsma.2023.103358
Mooney-et-al._2020
Mooney, T.; Andersson, M.; Stanley, J. (2020). Acoustic Impacts of Offshore Wind Energy on Fishery Resources: An Evolving Source and Varied Effects Across a Wind Farm’s Lifetime. Oceanography, 33(4), 82-95. https://doi.org/10.5670/oceanog.2020.408
Point-Blue-et-al._2024
Rockwood, R.C., L. Salas, J. Howar, N. Nur and J. Jahncke. 2024. Using Available Data and Information to Identify Offshore Wind Energy Areas Off the California Coast. Unpublished Report to the California Ocean Protection Council. Point Blue Conservation Science (Contribution No. 12758). 95 pp.
Putman-et-al._2018
Putman, N.; Scanlan, M.; Pollock, A.; O'Neil, J.; Couture, R.; Stoner, J.; Quinn, T.; Lohmann, K.; Noakes, D. (2018). Geomagnetic field influences upward movement of young Chinook salmon emerging from nests. Biology Letters, 14(2)
Reeb-et-al._2022
Development of Computer Simulations to Assess Entanglement Risk to Whales and Leatherback Sea Turtles in Offshore Floating Wind Turbine Moorings, Cables, and Associated Derelict Fishing Gear Offshore California (PC-19-x07)
Reubens-et-al._2013
Reubens, J.T., Vandendriessche, S., Zenner, A.N., Degraer, S. and Vincx, M., 2013. Offshore wind farms as productive sites or ecological traps for gadoid fishes?–Impact on growth, condition index and diet composition. Marine environmental research, 90, pp.66-74.
Rockwood-et-al._2024
Rockwood, R.C., L. Salas, J. Howar, N. Nur and J. Jahncke. 2024. Using Available Data and Information to Identify Offshore Wind Energy Areas Off the California Coast. Unpublished Report to the California Ocean Protection Council. Point Blue Conservation Science (Contribution No. 12758). 95 pp.
SEER-Benthic-Disturbance-et-al._2022
(SEER) U.S. Offshore Wind Synthesis of Environmental Effects Research. 2022. Benthic Disturbance from Offshore Wind Foundations, Anchors, and Cables. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.
SEER-EMF-et-al._2022
(SEER) U.S. Offshore Wind Synthesis of Environmental Effects Research. 2022. Presence of Vessels: Effects of Vessel Collision on Marine Life. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.
SEER-Entagelment-et-al._2022
(SEER) U.S. Offshore Wind Synthesis of Environmental Effects Research. 2022. Risk to Marine Life from Marine Debris & Floating Offshore Wind Cable Systems. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.
SEER-New-Structures-et-al._2022
(SEER) U.S. Offshore Wind Synthesis of Environmental Effects Research. 2022. Introduction of New Offshore Wind Farm Structures: Effects on Fish Ecology. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.
SEER-Vessel-Collision-et-al._2022
(SEER) U.S. Offshore Wind Synthesis of Environmental Effects Research. 2022. Presence of Vessels: Effects of Vessel Collision on Marine Life. Report by National Renewable Energy Laboratory and Pacific Northwest National Laboratory for the U.S. Department of Energy, Wind Energy Technologies Office. Available at https://tethys.pnnl.gov/seer.
Slavik-et-al._2019
Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K. and Wirtz, K.W., 2019. The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea. Hydrobiologia, 845(1), pp.35-53.
Wang-et-al._2022
https://database.rwsc.org/details?recordId=rect0U7t5CgF9mHiW
Wilber-et-al._2017
Wilber, D. H., Carey, D. A., & Griffin, M. (2018). Flatfish habitat use near North America's first offshore wind farm. Journal of Sea Research, 139, 24-32.
Wyman-et-al._2018
Wyman, M. T., Klimley, A. P., Battleson, R. D., Agosta, T. V., Chapman, E. D., Haverkamp, P. J., ... & Kavet, R. (2018). Behavioral responses by migrating juvenile salmonids to a subsea high-voltage DC power cable. Marine Biology, 165(8), 1-15.
Karama-et-al._2021
Karama, K. S., Matsushita, Y., Inoue, M., Kojima, K., Tone, K., Nakamura, I., & Kawabe, R. (2021). Movement pattern of red seabream Pagrus major and yellowtail Seriola quinqueradiata around Offshore Wind Turbine and the neighboring habitats in the waters near Goto Islands, Japan. Aquaculture and Fisheries, 6(3), 300-308.
Bell-et-al._2020
Full citation
Bell, A.; von der Au, M.; Regnery, J.; Schmid, M.; Meermann, B.; Reifferscheid, G.; Ternes, T.; Buchinger, S. (2020). Does galvanic cathodic protection by aluminum anodes impact marine organisms?. Environmental Sciences Europe , 32(157).
Literature Type
Scientific paper
Research Question
Does galvanic cathodic protection by aluminum anodes impact marine organisms?
Monitoring Method
Laboratory experiment
Technology
Impact source/Stressor
Chemicals
Development Phase
Pre-construction
Receptor
Fish
Geographic Area
N/A
Spatial Scale
Laboratory
Temporal Scale
months - years
Main Findings
-Galvanic anodes for cathodic protection produced no direct envirmental impact on the tested organisms. Potential for biomagnification of metals.

Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.