icon picker
Jules Games Unity 6 LTS Beta Development

Last edited 33 days ago by Alexander Holmefjord-Sarabi.

Jules Games Unity 6 LTS Beta Development

Multi-LLM Adaptive Learning Platform - OPTIMIZED PLAN

4-Month Beta Program | $300K Budget | 2-Developer Team + Support

<analysis>

Key Optimizations Made:
Budget Reallocation: Reduced over-allocated AI costs ($50K→$40K) and infrastructure ($35K→$31K), added tech support specialist ($18K)
Personnel Adjustments: Developer salaries optimized to $9K/month each (market-competitive rate)
High-End Development Infrastructure: 2 PCs with RTX 5090s and AMD Ryzen 9950X for maximum Unity 6.1 performance
Scope Refinement: 3 core modules with 10-12 lessons each (vs 5 modules with 20-30 lessons) - more realistic for 2 developers
Enhanced Support: Added dedicated tech support specialist for DevOps, CI/CD, and infrastructure management
Timeline Adjustment: Removed overly aggressive content creation targets, focused on quality over quantity
Testing Optimization: 600 beta testers with rotating A/B/C testing vs exclusive provider groups
Exact Budget: Precisely allocated to $300K with no contingency needed due to realistic planning </analysis>

Executive Summary

Project Vision

We're building an intelligent Jules "School of Fish" Computational Thinking platform that hedges across multiple AI providers (OpenAI, Claude, and Grok) to determine the optimal solution for personalized learning. This beta will serve as a real-world testing ground to identify which AI performs best for teaching Computational Thinking (CT) concepts to preschoolers (ages 4-7) before committing to a primary provider for production.

Jules School of Fish Focus

Building on the award-winning School of Fish curriculum, we're creating an AI-enhanced version that teaches the four core Computational Thinking concepts:
Decomposition - Breaking down complex problems into smaller, manageable parts
Abstraction - Identifying and focusing on the essential features while ignoring irrelevant details
Algorithmic Thinking - Creating step-by-step instructions to solve problems
Pattern Recognition - Identifying similarities, trends, and regularities in data

Strategic AI Approach: The Three-Provider Hedge

Instead of betting on a single AI provider, we're implementing all three major LLMs in parallel:
OpenAI GPT-4: Industry leader, best for complex reasoning and creative content
Anthropic Claude: Superior for educational safety, detailed explanations, and ethical responses
xAI Grok: Real-time information access, humor-based engagement, and cost-effective scaling
During the beta, we'll A/B/C test these providers to determine:
Which provides the best Computational Thinking education outcomes for preschoolers
Which students prefer for different CT concepts (Decomposition vs Algorithmic Thinking vs Pattern Recognition vs Abstraction)
Cost-effectiveness per CT learning milestone achieved
Response speed and reliability for child-appropriate explanations
Safety and appropriateness for preschool age groups (4-7 years)

Optimized Team Structure

2 Mid-Level Unity Developers: Full-stack capable, working in parallel ($9K/month each)
Tech Support Specialist: DevOps, infrastructure, and technical troubleshooting support
Part-time Content Creator: Reduces bottleneck on core developers
No dedicated lead: Developers alternate weekly sprint leadership
No consultant: Direct integration with LLM APIs using documentation

Investment Breakdown

Timeline: 4 months to beta launch
Budget: $300,000 (optimized allocation)
Team: 2 developers + tech support + part-time content support
Deliverable: Multi-LLM beta with 3 core Jules "School of Fish" modules testing all three AI providers
Focus: Computational Thinking and Digital Literacy for ages 4-7

Technology Stack: Complete Architecture

Multi-LLM Architecture with Modern Database Stack

┌─────────────────────────────────────────────────────────┐
│ STUDENT INTERFACE │
│ Unity 6.1 LTS Client │
├─────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Rendering │ │ Learning │ │ AI Router │ │
│ │ Engine │ │ Modules │ │ & Manager │ │
│ │ (URP) │ │ │ │ │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
│ ┌────────────────────────────────────────────────────┐ │
│ │ Intelligent LLM Selection Layer │ │
│ │ (Routes to optimal AI for each task) │ │
│ └────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────┐
│ AI PROVIDER LAYER │
├─────────────────────────────────────────────────────────┤
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ OpenAI │ │ Claude │ │ Grok │ │
│ │ GPT-4 │ │ API │ │ API │ │
│ │ │ │ │ │ │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────┐
│ DATABASE & SERVICES │
├─────────────────────────────────────────────────────────┤
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Supabase │ │ Convex.dev │ │ Unity │ │
│ │ (Auth + │ │ (Real-time │ │ Analytics │ │
│ │ Storage) │ │ Sync) │ │ │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
│ ┌────────────────────────────────────────────────────┐ │
│ │ Learning Analytics & Progress DB │ │
│ └────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘

Core Technology Components

1. Unity 6.1 LTS Foundation

Technical Specifications:
Unity 6.1 LTS (version 6000.1)
Universal Render Pipeline (URP) optimized for mobile
Addressables for dynamic content loading
New Input System for cross-platform compatibility
TextMeshPro for high-quality educational text rendering
Business Value: Unity's proven stability with 2+ years guaranteed support ensures our educational platform won't need major technical updates during critical school years. Cross-platform deployment from a single codebase saves 40% in development costs.

2. Multi-LLM Integration Strategy

Technical Implementation:
public class MultiLLMOrchestrator
{
private readonly Dictionary<LLMProvider, ILLMService> providers = new()
{
{ LLMProvider.OpenAI, new OpenAIService() },
{ LLMProvider.Claude, new ClaudeService() },
{ LLMProvider.Grok, new GrokService() }
};
public async Task<LLMResponse> GetOptimalResponse(
CTQuery query,
ChildProfile child)
{
// Intelligent routing based on Jules CT concepts:
// - Algorithmic Thinking → GPT-4 (step-by-step reasoning)
// - Pattern Recognition → Claude (detailed explanations)
// - Decomposition → Grok (engaging, playful breakdown)
// - Abstraction → Provider rotation for comparison
// - Cost optimization (Grok for simple concepts)
// - Child's age and learning style
// - Provider availability and response time
var selectedProvider = DetermineOptimalCTProvider(query, child);
return await providers[selectedProvider].GenerateResponse(query);
}
// A/B/C testing framework with Jules CT focus
public async Task<CTComparisonResult> TestAllProviders(CTTestQuery query)
{
var results = await Task.WhenAll(
providers.Select(p => p.Value.GenerateCTResponse(query))
);
return AnalyzeCTResults(results);
}
}

OPTIMIZED Implementation Roadmap

Month 1: Foundation & Multi-LLM Architecture (Weeks 1-4)

Weeks 1-2: Environment Setup & Database Configuration

Developer 1 Focus: Unity & Infrastructure
Set up Unity 6.1 LTS project with URP
Configure Git repository with LFS
Implement Supabase authentication system
Create basic UI framework
Set up Unity Analytics
Developer 2 Focus: AI & Database Integration
Integrate all three LLM APIs (OpenAI, Claude, Grok)
Set up Convex.dev real-time sync
Create AI router/orchestrator system
Implement response caching layer
Build A/B/C testing framework
Tech Support Specialist Focus:
Set up CI/CD pipeline with Unity Cloud Build
Configure monitoring and logging systems (Datadog, Sentry)
Implement automated testing infrastructure
Manage cloud infrastructure provisioning
Set up development environment standards
Part-time Content Creator Focus:
Audit existing curriculum assets
Begin content planning for 3 core modules
Create content templates and standards
Deliverables:
✅ All three LLMs responding to test queries
✅ Supabase auth working with student accounts
✅ Convex real-time sync operational
✅ Basic Unity project structure complete
✅ Content roadmap for 3 modules defined

Weeks 3-4: Asset Migration & AI Training Pipeline

Developer 1 Focus: Asset Pipeline
public class AssetMigrationSystem
{
// Automated asset processing
public async Task MigrateEducationalContent()
{
// 1. Import existing sprites, audio, animations
// 2. Optimize textures for mobile (ASTC compression)
// 3. Generate texture atlases for UI elements
// 4. Process curriculum data into Supabase
// 5. Create Convex schemas for real-time data
}
}

Developer 2 Focus: LLM Optimization
# LLM Response Evaluation System
class LLMEvaluator:
def compare_responses(self, query, responses):
metrics = {
'accuracy': self.evaluate_accuracy(responses),
'appropriateness': self.check_age_appropriate(responses),
'engagement': self.measure_engagement_potential(responses),
'cost': self.calculate_cost_per_response(responses),
'speed': self.measure_response_time(responses)
}
return self.determine_winner(metrics)

Deliverables:
✅ 50% of assets migrated and optimized
✅ LLM comparison framework operational
✅ Initial performance benchmarks established
✅ Database schemas finalized

Month 2: Core Learning System & Module 1 (Weeks 5-8)

Weeks 5-6: Adaptive Learning Engine

Developer 1 Focus: Game Mechanics
Implement core learning loop
Create assessment system
Build progress tracking
Integrate with Supabase for persistence
Design reward/motivation system
Developer 2 Focus: AI-Powered Jules CT Features
public class AdaptiveCTSystem
{
// Intelligent CT tutoring with rotating provider testing
public async Task<CTTutorResponse> GetPersonalizedCTHelp(
CTChallenge challenge,
ChildProfile child)
{
// Rotate provider for A/B/C testing
var provider = GetRotatingTestProvider(child.Id);
// Generate age-appropriate CT guidance
var response = await provider.GenerateCTHint(
challenge,
child.LearningStyle,
child.CTSkillLevel,
child.Age // 4-7 years old
);
// Log for Jules-specific CT comparison analysis
await LogCTInteraction(child, provider, response);
return response;
}
// Jules-specific CT assessment
public async Task<CTProgressAssessment> EvaluateCTProgress(
ChildProfile child,
CTConcept concept) // Decomposition, Abstraction, etc.
{
// Assess understanding of specific CT concepts
// Track progression through Jules curriculum milestones
}
}

Weeks 7-8: Complete Module 1 - Algorithmic Thinking (Pearly Whirly)

Collaborative Development: Both developers + content creator work together to complete:
Module 1: Algorithmic Thinking through Pearly Whirly game (10-12 interactive lessons)
Teaching step-by-step problem solving with underwater treasure hunt adventures
AI tutoring from all three providers helping children understand sequences and processes
Real-time progress sync via Convex
Performance tracking in Supabase
Adaptive difficulty adjustment based on child's CT skill level
Rotating Testing Matrix:
Table 83
Week
Student Batch 1
Student Batch 2
Student Batch 3
Week 7
OpenAI
Claude
Grok
Week 8
Claude
Grok
OpenAI
There are no rows in this table
Jules-Specific Learning Objectives:
Understanding sequence and order
Breaking down tasks into steps
Following and creating simple algorithms
Problem-solving through logical progression

Month 3: Additional Jules CT Modules & Optimization (Weeks 9-12)

Weeks 9-10: Module 2 - Pattern Recognition (Chomp Chomp)

Module Distribution:
Developer 1 + Content Creator: Module 2 implementation - Chomp Chomp pattern recognition game (10-12 lessons)
Teaching children to identify similarities, trends, and regularities through underwater feeding adventures
Developer 2: Performance optimization, caching improvements
Jules-Specific Learning Objectives:
Identifying repeating patterns in sequences
Recognizing similarities and differences
Predicting what comes next in a pattern
Classifying objects and concepts

Weeks 11-12: Module 3 - Decomposition (Manta Match Mania) + System Optimization

Final Jules CT Module:
All team members: Module 3 completion - Manta Match Mania decomposition game
Teaching children to break down complex problems into smaller, manageable parts
AI provider performance analysis across all 3 CT concepts
System-wide optimization
Beta deployment preparation
Jules-Specific Learning Objectives:
Breaking large problems into smaller pieces
Understanding part-to-whole relationships
Simplifying complex tasks
Organizing information systematically
Optimization Strategies:
// Optimized Caching Layer for Cost Reduction
const cacheStrategy = {
commonQueries: 'cache-forever', // Basic Q&A
personalizedHints: 'cache-1-hour', // Adaptive content
realTimeData: 'no-cache', // Current events (Grok)
// Provider-specific caching
openai: { ttl: 3600, maxSize: '100MB' },
claude: { ttl: 7200, maxSize: '150MB' },
grok: { ttl: 1800, maxSize: '50MB' } // Shorter due to real-time
};

Month 4: Beta Testing & Provider Evaluation (Weeks 13-16)

Weeks 13-14: Beta Deployment

Optimized Testing Infrastructure:
Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.