def converse(model, initial_prompt, num_words_per_turn):
model.eval() # Set model to evaluation mode
conversation = initial_prompt
user_input = ""
while True:
# User input
user_input = input("You: ")
if user_input.lower() == "quit":
break
# Preprocess the input
user_input = preprocess_text(user_input)
conversation += user_input
# Generate model response
seed_text = conversation.split()[-num_words_per_turn:] # Get the last few words
seed_tensor = torch.tensor([word_to_ix[word] for word in seed_text if word in word_to_ix]) # Convert to tensor
for _ in range(num_words_per_turn):
output, _ = model(seed_tensor.unsqueeze(0), None) # Generate output from model
_, predicted = torch.max(output[:, -1, :], 1) # Get the predicted next word
generated_word = ix_to_word[predicted.item()] # Convert index to word
conversation += " " + generated_word
seed_tensor = torch.cat((seed_tensor, predicted)) # Append to the seed tensor for next iteration
print("AI:", conversation[len(initial_prompt):])
# Print AI's part of the conversation
# Before using the converse function, you will need to have:
# - word_to_ix: a dictionary mapping from words to their indices
# - ix_to_word: a dictionary mapping from indices to their words
# - initial_prompt: a string that starts the conversation
# You will also need to have trained your model with an appropriate dataset
# and have the model loaded into memory before starting the conversation.