pip install transformers torch
from transformers import pipeline
def sentiment_analysis(sentence):
# Initialize the Hugging Face sentiment analysis pipeline
classifier = pipeline('sentiment-analysis')
# Use the pipeline to analyze the sentence
result = classifier(sentence)[0]
return result
# Test the function with a sentence
print(sentiment_analysis("I love learning about AI with Hugging Face!"))
pip install transformers
pythonCopy code
from transformers import pipeline
pythonCopy code
# Initialize a pipeline for sentiment analysis
classifier = pipeline('sentiment-analysis')
# Analyze the sentiment of a text
result = classifier('I love learning about AI with Hugging Face!')[0]
print(f"label: {result['label']}, with score: {result['score']:.4f}")
# First, make sure to install the Hugging Face transformers library.
# You can uncomment the following line to do this directly in your Python script:
# !pip install transformers
# Import the necessary library
from transformers import pipeline
# Initialize a pipeline for sentiment analysis
classifier = pipeline('sentiment-analysis')
# Analyze the sentiment of a text
result = classifier('I love learning about AI with Hugging Face!')[0]
print(f"label: {result['label']}, with score: {result['score']:.4f}")
# Initialize a pipeline for text generation
text_generator = pipeline('text-generation')
# Generate a text
result = text_generator('Once upon a time, there was a little girl named')[0]
print(result['generated_text'])
To use different models for text generation, you just need to specify the model name in the pipeline function.
Here are examples of text generation with three different models:
gpt2
EleutherAI/gpt-neo-1.3B
text-davinci-002.
Before running these examples, make sure you have the transformers library installed in your Python environment.
from transformers import pipeline
# Initialize a pipeline for text generation with GPT-2
text_generator_gpt2 = pipeline('text-generation', model='gpt2')
# Generate a text with GPT-2
result_gpt2 = text_generator_gpt2('Once upon a time, there was a little girl named')[0]
print("GPT-2: ", result_gpt2['generated_text'])
# Initialize a pipeline for text generation with GPT-Neo
text_generator_gpt_neo = pipeline('text-generation', model='EleutherAI/gpt-neo-1.3B')
# Generate a text with GPT-Neo
result_gpt_neo = text_generator_gpt_neo('Once upon a time, there was a little girl named')[0]
print("GPT-Neo: ", result_gpt_neo['generated_text'])
# Initialize a pipeline for text generation with text-davinci-002
text_generator_davinci = pipeline('text-generation', model='openai-gpt')
# Generate a text with text-davinci-002
result_davinci = text_generator_davinci('Once upon a time, there was a little girl named')[0]
print("Text-DaVinci-002: ", result_davinci['generated_text'])
from transformers import pipeline
# Define hyperparameters
max_length = 50
temperature = 0.7
num_return_sequences = 3
# Initialize a pipeline for text generation with GPT-2
text_generator_gpt2 = pipeline('text-generation', model='gpt2')
# Generate a text with GPT-2
result_gpt2 = text_generator_gpt2('Once upon a time, there was a little girl named', max_length=max_length, temperature=temperature, num_return_sequences=num_return_sequences)
for i, res in enumerate(result_gpt2):
print(f"GPT-2 text {i+1}: ", res['generated_text'])
# Initialize a pipeline for text generation with GPT-Neo
text_generator_gpt_neo = pipeline('text-generation', model='EleutherAI/gpt-neo-1.3B')
# Generate a text with GPT-Neo
result_gpt_neo = text_generator_gpt_neo('Once upon a time, there was a little girl named', max_length=max_length, temperature=temperature, num_return_sequences=num_return_sequences)
for i, res in enumerate(result_gpt_neo):
print(f"GPT-Neo text {i+1}: ", res['generated_text'])
# Initialize a pipeline for text generation with text-davinci-002
text_generator_davinci = pipeline('text-generation', model='openai-gpt')
# Generate a text with text-davinci-002
result_davinci = text_generator_davinci('Once upon a time, there was a little girl named', max_length=max_length, temperature=temperature, num_return_sequences=num_return_sequences)
for i, res in enumerate(result_davinci):
print(f"Text-DaVinci-002 text {i+1}: ", res['generated_text'])
bashCopy code
pip install transformers torch
pythonCopy code
from transformers import pipeline
# Define a function to perform sentiment analysis
def analyze_sentiment(text):
# Initialize the Hugging Face sentiment analysis pipeline
classifier = pipeline('sentiment-analysis')
result = classifier(text)
return result
# Read text file
with open('your_file.txt', 'r') as file:
data = file.read().replace('\n', '')
# Analyze sentiment of the text file
sentiment_result = analyze_sentiment(data)
print(sentiment_result)