from tqdm import tqdm
import numpy as np
import pandas as pd
from itertools import accumulate
import matplotlib.pyplot as plt
from torchtext.data.utils import get_tokenizer
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import numpy as np
from torchtext.datasets import AG_NEWS
from IPython.display import Markdown as md
from tqdm import tqdm
from torchtext.vocab import build_vocab_from_iterator
from torchtext.datasets import AG_NEWS
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
from sklearn.manifold import TSNE
import plotly.graph_objs as go
from sklearn.model_selection import train_test_split
from torchtext.data.utils import get_tokenizer
# You can also use this section to suppress warnings generated by your code:
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
warnings.filterwarnings('ignore')