Active Inference Ontology

icon picker
Ontology ~ Notes

View of Full Ontology
Term
Tag
Notes_1
Notes_2
Notes_3
Notes_4
Notes_5
Notes_6
Notes_7
Notes_8
Notes_9
Notes_10
Notes_11
Notes_12
Notes_13
Accuracy
Action
Action Planning
Action prediction
Active Inference
Active Learning
Active States
Which states are internal/external? Which are autonomous states?
Action vs Active states?
Partitioning of blanket states into incoming (sense) and outgoing (action) statistical dependencies.
Have outgoing statistical dependencies with external states
Have outgoing statistical dependencies towards external states
Active Vision
Affordance
Agency
Agent
Ambiguity
Cannot describe when one thing becomes another -- e.g. forest and trees, or what makes someone rich, thresholds.
Some kind of undecidable uncertainty?
Only related to Observations~State mappings? Or other parameters? Does this have similar use as informal deployment of the term or not?
Attention
Machine learning // Conscious or Aware attention
Regimes of attention https://www.frontiersin.org/articles/10.3389/fpsyg.2016.01090/full https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00679/full how is this related to motor/visual and salience "Attention"
Can non-cultural ActInf agents have shared regimes of attention
Attention and Information?
Autopoiesis
Bayesian Inference
Behavior
Belief
Belief updating
Blanket States
Dave asks, If we enforce as a definition the observation that "internal states do not influence sensory states," do we exclude some examples of predictive processing internal to the CNS? E.g. a wine-taster systematically scans (differentially activates) various olefactory centers (S. Barwich, Smellosophy: "Olfactory receptors, as the interface of the olfactory system, actively structure stimulus input;" Jordan et al., “Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation," Neuron 98.
Cognitive psychologist Ulric Neisser coined the term "perceptual cycling," to describe perception as a cyclical process in the brain, suggesting that search patterns in foraging behavior filter input information. Alternating oscillation phases mirror the periodic sampling of sensory input and govern the responsiveness of particular brain regions, including their connectivity. Several neural populations are actively competing at any given time. So the brain is primed by its own mechanisms of input selectivity.
What are Markov Blankets? What is the usage in FEP?
Interface / Boundary states for systems and their environments
(Sense and Action)
Values of parameters of the (Markov) Blanket
Blanket states mediate Internal and External states
Things or "Boundaries between things"
Partitioning, how does this relate to boundaries in the real world?
Thermodynamic & Homeostatic systems. H systems do have T properties. But they are not the same thing. Two poles of the analogy. Media & Message. Memeology.
https://pubmed.ncbi.nlm.nih.gov/33607182/ "Recent characterisations of self-organising systems depend upon the presence of a 'Markov blanket': a statistical boundary that mediates the interactions between the inside and outside of a system."
What's the alternative here?
Cognition
Complexity
Cue
Culture
Data
Decision-making
Ensemble
Epistemic value
(Pragmatic and Epistemic) & (Extrinsic & Intrinsic) ---> Whats the relationship, are these the same?
Intrinsic motivation involves performing a task because it’s personally rewarding to you.Extrinsic motivation involves completing a task or exhibiting a behavior because of outside causes such as avoiding punishment or receiving a reward. The main difference between intrinsic and extrinsic motivation is that intrinsic motivation comes from within, and extrinsic motivation comes from outside. While both types of motivation are important, they have different effects on how you work. https://www.rochester.edu/emerging-leaders/understanding-intrinsic-and-extrinsic-motivation/
https://www.tandfonline.com/doi/abs/10.1080/17588928.2015.1020053?journalCode=pcns20 Minimizing expected free energy is therefore equivalent to maximizing extrinsic value or expected utility (defined in terms of prior preferences or goals), while maximizing information gain or intrinsic value (or reducing uncertainty about the causes of valuable outcomes).
From Karl: Epistemic value is the information gain or reduction in uncertainty about latent states afforded by the outcomes of a particular policy. It is variously known as Bayesian surprise, epistemic affordance, the value of information, intrinsic motivation and so on. Mathematically, it is the KL divergence between beliefs about latent states before and after the outcomes of a policy. Epistemic value is the value of a policy that is a functional of beliefs about the causes of sensations.
Ergodicity
Evidence
Expected Free Energy
External States
Realist and Instrumentalist
External/Internal/Interface
Is it important that the partitioning be this way?
Qualify & Quantify
What is the relevance of this partitioning scheme (e.g. with a blanket separating Internal/External states)
The partitions are set by us on something else observed/modeled.
From Colombo & Wright: "For free-energy theorists, the dynamics of such systems will appear to place an upper bound on their informational entropy, and to maximize the evidence for a model M of external states “entailed” by their characteristic properties. This behavior—they would conclude—can be expressed as approximate Bayesian (active) inference about the causes of sensory states in terms of minimizing variational free energy.Footnote6"
What happens to the generative model when we are asleep? Do we have a generative model at that time?
Is it the same model being used differently, but then is it a different model?
Internal & External states -- they are a partitioning, have to be separate.
Free Energy
Free Energy Principle
Friston Blanket
Generalized Free Energy
Generative model
Generative model of what?
Generative model is starting concept of Active Inference -- Distinction from FEP (?) -- Dynamics and behavior are starting from GM, action as well. All talks about terms should include this.
Generative Model &/of a Generative Process
Recognition models and Generative models.
Recognition model is from empirical observations to updates of inferred hidden states. Generative model is from inferred hidden states to plausible emitted observed states. This is the "tale of two densities" because models are distributions which are statistical densities.
"Processing" is often used in a uni-directional Recognition Model type way -- "Predictive Processing" entails and requires a Prediction
What is the relationship between conscious experience & Generative models? Why are some GM experienced or not? Meta-modeling?
GM of Sense + Action
Enactivism + Predictive Processing ---> PP does deal with action. However in Maria's perspective they do not pay as much attention to the environment, e.g. they are more focused on the organismal dynamics perhaps.
Generative Modeling is the key for perception?
Deep GM / Deep Inference.
Where is the body in GM?
Broadest most-applicable definition ----> Then we specify Computational, Embodied, Enacted.
Generative Process
Hidden state
Hierarchical Model
Inference
Information
Information Geometry
Internal States
What is an Internal state?
From Demakas et al 2020: "Imagine that every single state of being has a position in an abstract state space. There are 4 important kinds of states (i.e., dimensions) in this space: sensory states (e.g., the sound of a voice), active states (e.g., listening1), internal states (e.g., thoughts, feelings), and environmental states (e.g., location, context). These states are by definition the partitions afforded by Markov blanket."
Is this the only possible partitioning? Only one possible or only one for ActInf? ActInf with other partitionings?
Do partitions align with natural aspects/features/"systems" in the world?
Relationship with the topology of the action loop?
What are Internal States? Nesting of internal states depending on regime of attention, scale, Homeostatic, Cognitive
Utility of separating formal terms and definitions/notions -- Markov Blanket Action: is ...., separation from applications in domains (cell, psychology, social, computational)
Starting with the purely statistical Markov, Pearl, Friston, Beyond --> applications across domains.
Is enactivism realism?
Computational systems to test space of possible loops/partitions since empirical measurements are not always directly suggestive of particular partition
Tale of Two Densities: "The ‘causal bite’ of the generative model comes from the fact that it plays a role in policy selection by inducing free energy gradients (which then guide changes to beliefs about action). In other words, generative models are normative models of ‘what ought to be the case, given the kind of creature that I am’– they are realised physically through adaptive, belief-guided, normative actions that maintain the creature in its phenotypic states."
Inconstant or incompatible use of realism/instrumentalism, action-perception loops, interpretations of the priority of blanket vs. co-equal partitition, etc....
From Karl: Statistically, the existence of a Markov blanket means external states are conditionally independent of internal states, and vice versa, Given the blanket states. Generally, internal states can only influence active states.
Latent cause
Living system
Markov Blanket
Who is Markov / What is Markovian?
What does "blanket" or "blanketing" mean?
https://en.wikipedia.org/wiki/Markov_property A stochastic process has the Markov property if the conditional probability distribution of future states of the process (conditional on both past and present values) depends only upon the present state; that is, given the present, the future does not depend on the past.
Representing boundaries / boundary conditions -- where we have liminalitiy. Conditional independence separates 'things' out from their environment
Node partitioning scheme (where nodes are statistical variables) -- separating into Internal, External, and Blanket states. Blanket states render the Internal and External states conditionally independent.
Starting with System of Interest -- To define separation of System and Environment, we define the boundary of the system.
Difference between Physical boundary & Statistical insulation?
Separation of system from environment requires persistent boundary / Blanket. Will depend on the scale of analysis.
Nested Markov Blankets will have different realizations.
Examples of [Internal, External, Blanket states]
Cell [Cytoplasm Internal, Environment External, Membrane = Markov Blanket]
Markov Decision Process
Markovian Monism
Model Inversion
When you calculate a prior from a posterior and a likelihood, is that an example of model inversion?
If you must re-calculate specific priors - and these are priors that CANNOT be altered (the evolutionarily-cast-in-base-pairs homeostatic set points) - does something special happen? - maybe fugue, dissociation, fainting, panic, depressive paralysis, shell-shock, repression, "cognitive dissonance," delusion, hysteria?
Multi-scale system
Narrative (model)
Niche
Non-Equilibrium Steady State
Novelty
Observation
Particle
Perception
Policy
Policy selection
Posterior
Pragmatic value
What are the connections between Pragmatic/Epistemic Value and Affordances?
Generative model is performing action-selection (as constrained/weighted by E affordance matrix). The value of the Action decomposes into P/E Value ---> We also talk about P/E "actions" but this may not be proper use
Where does niche modification come into play --> e.g. preparing a book shelf.
Utility is definied by the specific situation.
How do the stories/beliefs we have in the world influence action selection? Affective inference.
Prediction
Principle
Process Theory
Recognition Models
Regime of Attention
Representation
Risk
Salience
Sense States
What do edges represent? E.g. labeling the edges
Have incoming statistical dependencies with external states
Have outgoing statistical dependencies towards internal states
State
State space
Where is time in the state space? Synchronic & Diachronic.
State = Variable? Value the variable can hold? Space = area that the variables can exist with?
How do we represent CHANGE in state spaces? Constant updating? "Betweenness". It is "OF" a (dynamic) system, and "AS" the system itself.
https://en.wikipedia.org/wiki/State-space_representation "The state of the system can be represented as a state vector within that space."
Realist & Instrumentalist --- State space as being actually what occurs, vs. how we model it.
Any time you abstract out a system, there is a state space.
The internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time.
Set of variables/parameters that describe a system.
https://en.wikipedia.org/wiki/Phase_space a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space.
Set of all variables/parameters that contextual or describe an action or outcome.
Stationary processes, Ergodicity, etc.
Surprise
System
System is the physical parts? Systems Engineering
Synergetics Subsystem, 265.05-06, 266.05, 1053.801, 1071.21 System, 168, 223.67, 224.30, 251.26, 261.01, 264.01, 265.04, 361-63, Chapter 4, 430.06, 501.10-11, 505.64, 505.71-74, 524.11, 526.10-19, 526.22-23, 526.25, 526.30-33, 527.25-26, 530.11, 531.04, 532.17, 538.03, 538.11, 542.01-05, 812.01, 831.01, 960.08, 986.730, 986.819, 986.850-57, 987.011-13, 1006.13, 1007.26, 1007.29, 1011.10-11, 1023.10-16, 1044.03-05, 1044.08, 1050.10, 1054.55, 1071.00-28, 1072.21, 1073.12, 1073.14, 1075.23, 1076.11
Open/Closed system from Thermo?
Open, Closed, Active Inference Systems? However we define system we want to make sure it is in the spirit of what it is for
from the SEBoK (1) A set of elements in interaction. (von Bertalanffy 1968) (2) combination of interacting elements organized to achieve one or more stated purposes (ISO/IEC/IEEE 2015) (3) A system is an arrangement of parts or elements that together exhibit behavior or meaning that the individual constituents do not. (INCOSE Fellows, 2019)
Varela & Maturana, Autopoiesis, Open systems. How to think about systems.
Realism and Instrumentalism
Nested subsystem (what Fuller calls "the system" as opposed to Universe).
Static, dynamic, open, closed -- what is the common feature? Where is the "between"? In e.g. a thermodynamic system. Where is the overlap among the different uses
One aspect: Two or more system elements and their betweenness
Second aspect: Relational insight
Systems, Agents. Intentionality of "betweenness" of the agent in their niche.
Function, Modularity, Physical Place
Temporal Depth
Uncertainty
Variational
Variational free-energy
Abstract Action
Abstract action prediction
Abstract Bayesian Inference
Abstract epistemic value
Abstract External State
Abstract Generative Model
Abstract Hidden State
Abstract Internal State
Abstract Sensory State
Abstract System
AbstractAccuracy
Action
Action and Planning as Divergence Minimization
Action at a distance
Action Integral
Active Inference
Agency based model
Agency free model
Alignment (of internal states)
Appraisal theories of emotion
Attenuation of response
Augmented reality
Bayes-optimal control
Bayesian
Bayesian Brain
Bayesian surprise
Belief updating
Bottom-up attentional control
Cognitive Science
Cognitive System
Cognitivism
Collective behavior
Conditional density
Conditional Probability
Congruence
Connectionism
Control (states)
Control theory
Counterfactual
Cybernetics
Density
Deontic Action
Development
Dissisipation
Divergence (Kullback–Leibler)
Domain
Domain-generality
Domain-specificity
Dynamic causal modelling
Dynamic expectation maximization
Dynamicism
Ecology
Ecology, Evolution, Development
Embedded Embodied Encultured Enactive Inference
Embodied Cybernetic Complexity
EmbodiedBelief
Emotion
Empirical prior
Enactivism
Entropy
Estimator
Event-related potential (ERP)
Evolution
Expectation maximization
Expected Utility Theory
Experience of body ownership (EBO)
Explaining Away
Explanation
Extended Cognition
Falsification
Far-from-equilibrium
Fokker-Planck Equation
Foraging
Friston's Law
functional magnetic resonance imaging (fMRI)
Gaussian distribution
Generalized coordinates
Generalized Synchrony
Generative density
Generative modelling
Gestalt
Goal-driven selection
Gradient Descent
Group Renormalization Theory
Guidance signal
Habit learning/formation
Hamilton's Principle of Least Action
Helmholtz (inference) machine
Hierarchically Mechanistic Mind
Homeostasis
Homeostatic system
Homeostatic system
Hyperprior
Hypothesis
Information bottleneck (IB)
Interoception
Interoceptive sensitivity
Inverse problem
Lateral geniculate nucleus
Likelihood
Marr's Levels of Description
Material science
Memory
Message Passing
Mismatch negativity
Model
Model accuracy
Morphogenesis
Multisensory integration
Neuronal Ensemble
Niche construction
Noisy signal
Non-linear dynamical systems
Optimal control
Precision
Prediction error
Prediction error minimization
Predictive Coding
Predictive coding (PC)
Predictive Processing
Prior
Random variable
Receptive field
Recognition density
Representationalism
Reservoir Computing
Reward
Salience
Sample space
Selection bias
Selection history
Self-organization
Selfhood
Semi-Markovian
Sense of agency
Sensory attenuation
Sensory Data
Sensory input
Sensory outcome
Shared Generative Model ('Shared Narrative')
Signal
Simulation
Sophisticated Inference
spike-timing dependent plasticity
Stigmergy
Stochastic
Subjective feeling states
Surprisal
Synergetics
Teams
Theory
Thermodynamic system
Thermostatistics
Thinking Through Other Minds
Top-down attentional control
Umwelt
Unidirectionality or "mere" active inference
Variational Niche Construction
Von Economo neurons (VENs)
Weak mixing
Working memory
World States (World Systems)
Interface
active
area
attitude
backbone
causality
computer
concentration
concept
consensus
conversation
current
default-mode
dynamics
ego
energy
environment
error
feedback
field
framework
free
genetic
hierarchical
idea
increase
influence
interpretation
inverse
language
machine
metaphor
neuronal
object
objective
observer
parameter
part
perceptual inference
perspective
phase
physics
play
probability
Probably Approximately Correct (PAC)
problem
propositional
purpose
question
random
recognition
role
science
selection
self-organization
social
states
technology
understanding
resource
tree
abstractCounterpart
represents
There are no rows in this table

Want to print your doc?
This is not the way.
Try clicking the ⋯ next to your doc name or using a keyboard shortcut (
CtrlP
) instead.